1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
def read_fa(file, mode='train'): assert mode in {'train','test'} labels = [] seqs_info = [] cates_id = [] seq = '' with open(file,mode='r') as f: line = f.readline().strip() while line: if line[0]=='>': info = line[1:].split(' ') cates_id.append(info[0]) if mode == 'train': labels.append(''.join(info[1].split('.')[:2])) if seq: seqs_info.append(seq) seq = '' else: seq += line line = f.readline().strip() seqs_info.append(seq) return cates_id,seqs_info,labels
from utils import * import pandas as pd import numpy as np from sklearn.metrics import f1_score, fbeta_score, precision_score, recall_score, roc_auc_score from sklearn.model_selection import StratifiedKFold as KFold import lightgbm as lgb
train_file = './训练集/astral_train.fa' test_file = './测试集/astral_test.fa'
train_sample_id, train_seqs_info, train_labels = read_fa(train_file, mode='train') test_sample_id, test_seqs_info, _ = read_fa(test_file, mode='test') train_data = { 'sample_id': train_sample_id, 'seq_info': train_seqs_info, 'label': train_labels }
test_data = { 'sample_id': test_sample_id, 'seq_info': test_seqs_info, }
label_map = {l:idx for idx,l in enumerate(set(train_labels))}
rev_label_map = {v:k for k,v in label_map.items()}
train = pd.DataFrame(data=train_data) test = pd.DataFrame(data=test_data)
train['label'] = train['label'].map(label_map)
alp = list(set(''.join(train_seqs_info + test_seqs_info)))
train['seq_len'] = train['seq_info'].apply(lambda x:len(x)) test['seq_len'] = test['seq_info'].apply(lambda x:len(x))
for s in alp: train['count_'+s] = train['seq_info'].apply(lambda x:x.count(s)) train['freq_'+s] = train['seq_info'].apply(lambda x:x.count(s)/len(x)) test['count_'+s] = test['seq_info'].apply(lambda x:x.count(s)) test['freq_'+s] = test['seq_info'].apply(lambda x:x.count(s)/len(x))
feats = [i for i in train.columns if i not in ['label','sample_id','seq_info']]
x_train = train[feats] y_train = train['label'] x_test = test[feats]
params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 245, 'metric': 'multi_error', 'num_leaves': 300, 'min_data_in_leaf': 500, 'learning_rate': 0.007, 'max_depth': 8, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'lambda_l1': 0.4, 'lambda_l2': 0.5, 'min_gain_to_split': 0.2, 'verbose': -1, 'num_threads':2, }
folds = KFold(n_splits=5, shuffle=True, random_state=2021)
oof = np.zeros([len(x_train),245]) predictions = np.zeros([len(x_test),245]) for fold_, (trn_idx, val_idx) in enumerate(folds.split(x_train, y_train)): print("fold n°{}".format(fold_+1)) trn_data = lgb.Dataset(x_train.iloc[trn_idx], y_train.iloc[trn_idx]) val_data = lgb.Dataset(x_train.iloc[val_idx], y_train.iloc[val_idx]) num_round = 1000 clf = lgb.train(params, trn_data, num_round, valid_sets = [trn_data, val_data], verbose_eval = 100, early_stopping_rounds = 50) oof[val_idx] = clf.predict(x_train.iloc[val_idx][feats], num_iteration=clf.best_iteration) predictions += clf.predict(x_test, num_iteration=clf.best_iteration) / folds.n_splits
x_test['sample_id'] = test['sample_id'] x_test['category_id'] = [rev_label_map[list(x).index(max(x))] for x in predictions] x_test['category_id'] = x_test['category_id'].apply(lambda x: x[0]+'.'+x[1:]) x_test[['sample_id', 'category_id']].to_csv('base_sub.csv', index=False)
y_pre = oof.argmax(axis=1) print("F1 score: {}".format(f1_score(y_train, y_pre,average='micro'))) print("Precision score: {}".format(precision_score(y_train, y_pre,average='micro'))) print("Recall score: {}".format(recall_score(y_train, y_pre,average='micro')))
|